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1. Introduction
1.1 Scientific Background
Physical Activity (PA) and exercise capacity 
are among the most important determi-
nants of health, both in healthy subjects as 

well as disease populations [1]. The re-
duced Physical Activity Level (PAL) in 
most western countries is causing new epi-
demics such as obesity and diabetes to 
spread [2]. Ubiquitous technologies, such 
as accelerometers and Heart Rate (HR) 

monitors [3], started providing unprece-
dented insights into links of PA and health. 
Early epidemiological research focused on 
developing single models or branched 
equations combining accelerometer and 
HR data to predict EE [4 – 6]. These ap-
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Summary
Introduction: This article is part of the  
Focus Theme of Methods of Information in 
Medicine on “Pervasive Intelligent Technol-
ogies for Health”. 
Background: Energy Expenditure (EE) esti-
mation algorithms using Heart Rate (HR) or a 
combination of accelerometer and HR data 
suffer from large error due to inter-person 
differences in the relation between HR and 
EE. We recently introduced a methodology to 
reduce inter-person differences by predicting 
a HR normalization parameter during low in-
tensity Activities of Daily Living (ADLs). By 
using the HR normalization, EE estimation 
performance was improved, but conditions 
for performing the normalization automati-
cally in daily life need further analysis. Seden-

tary lifestyle of many people in western so-
cieties urge for an in-depth analysis of the 
specific ADLs and HR features used to perform 
HR normalization, and their effects on EE esti-
mation accuracy in participants with varying 
Physical Activity Levels (PALs). 
Objectives: To determine 1) which low inten-
sity ADLs and HR features are necessary to ac-
curately determine HR normalization parame-
ters, 2) whether HR variability (HRV) during 
ADLs can improve accuracy of the  estimation 
of HR normalization parameters, 3) whether 
HR normalization parameter estimation from 
different ADLs and HR features is affected by 
the participants’ PAL, and 4) what is the 
 impact of different ADLs and HR features used 
to predict HR normalization parameters on EE 
estimation accuracy. 
Methods: We collected reference EE from in-
direct calorimetry, accelerometer and HR data 
using one single sensor placed on the chest 
from 36 participants while performing a wide 

set of activities. We derived HR normalization 
parameters from individual ADLs (lying, sed-
entary, walking at various speeds), as well as 
combinations of sedentary and walking ac-
tivities. HR normalization parameters were 
used to normalized HR and estimate EE. 
Results: From our analysis we derive that  
1) HR normalization using resting activities 
alone does not reduce EE estimation error in 
participants with different reported PALs.  
2) HRV features did not show any significant 
improvement in RMSE. 3) HR normalization 
parameter estimation was found to be biased 
in participants with different PALs when sed-
entary-only data was used for the estimation. 
4) EE estimation error was not reduced when 
normalization was carried out using seden-
tary activities only. However, using data from 
walking at low speeds improved the results 
significantly (30–36%). 
Conclusion: HR normalization parameters 
able to reduce EE estimation error can be ac-
curately estimated from low intensity ADLs, 
such as sedentary activities and walking at 
low speeds (3 – 4 km/h), regardless of re-
ported PALs. However, sedentary activities 
alone, even when HRV features are used, are 
insufficient to estimate HR normalization 
 parameters accurately.
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proaches are motivated by the relations be-
tween body movement and EE as well as 
between oxygen intake, HR and EE. The 
limitation of these methods include that a 
single accelerometer worn close to the 
body center of mass cannot detect low and 
upper body motion [7], the reduced rel-
evance of HR during sedentary behavior 
and the need for individual calibration [6]. 
By introducing activity-specific models, 
consisting of a two-step process, where first 
an activity is recognized, and then an EE 
estimation model is applied, researchers 
were able to tackle some of these limi-
tations [3, 5]. The relation between EE and 
acceleration as well as HR is peculiar of a 
specific context (e.g. activity), thus activity-
specific models are able to capture this 
 relation beyond what single regression 
models or branched models can do [7– 9]. 
Even though algorithms including HR con-
sistently provided improvements compared 
to accelerometers alone [4, 6, 9], the main 
limitation of HR – which is the need for in-
dividual calibration – requires a different 
solution. Decomposing the EE estimation 
process into activity-specific sub-problems 
is not sufficient to take into account the 
 different relation between HR and EE in 
different individuals. 

During moderate to vigorous PA, differ-
ences in HR between persons performing 
the same activity are mainly due to car-
diorespiratory fitness (CRF). However, 
 differences in CRF level do not cause dif-
ferent metabolic responses [10]. Neverthe-
less, CRF-related variance was tackled only 
by means of individual calibration [6] and/
or by performing intense activities such as 
running [11]. For many practical appli-
cations personal calibration is not feasible 
since it would require every user to per-
form a suitable fitness test. We recently in-
troduced a methodology to automatically 
normalize HR by estimating a normaliza -
tion parameter that describes HR at a cer-
tain workload, using low intensity ADLs 
[13] (see Fig. 1). The methodology is based 
on the tight relation between CRF and the 
HR at a certain workload, which is the 
basis of sub-maximal CRF tests [14].

1.2 Rationale for the Study

Practical conditions for performing the 
normalization automatically in daily life 
need further analysis. The sedentary life-
style of many people in western societies 
[15] urge for an in-depth analysis of the 
specific ADLs required to predict HR nor-
malization parameters, and their effects on 
EE estimation accuracy in persons with 
varying PALs. Additionally, HR variability 
(HRV) features from sedentary activities as 
well as moderate to intense ones have been 
shown to be linked to CRF level and PALs 
in past research [16, 17]. Even though this 
link is unclear, and results are often in dis-
agreement [18 –20], given the close relation 
between CRF and HR normalization pa-
rameters it is of interest to analyze if HRV 
features can predict HR normalization pa-
rameters and reduce EE estimation error.

1.3 Objectives of the Study

This is the first analysis of how low inten-
sity ADLs and HR features can be used to 
estimate HR normalization parameters, 
and their effects on EE estimation accu-
racy. Our objectives are: 1) To determine 
which ADLs and HR features are necessary 
to accurately determine HR normalization 
parameters, 2) To determine whether HRV 
during ADLs can improve accuracy of the 
estimation of HR normalization parame-
ters, 3) To determine whether HR normal-
ization parameters estimation from differ-
ent ADLs and HR features is affected by the 
participants’ PAL and 4) To determine 
what is the impact of different ADLs and 
HR features used to predict HR normal iza -
tion parameters on EE estimation accuracy.

2. Methods
2.1 Participants

Participants were 36 (27 male, 9 female) 
self-reported healthy Holst Centre em-
ployees from diverse ethnic background. 
Mean age was 31.2 ± 5.7 years, mean 
weight was 73.3 ± 11.2 kg, mean height was 
176.6 ± 9.1 cm and mean BMI was 23.4 ± 
2.4 kg/m2. Imec’s IRB approved the study, 
and each participant signed an informed 
consent form. 

2.2 Study Design

Participants reported at the lab after re-
fraining from drinking (except for water), 
eating and smoking in the two hours before 
the experiment. The protocol consisted of 
common ADLs in industrialized countries 
[22], as well as intense activities. Activities 
were grouped into six clusters to be used 
for activity classification. The six clusters 
were lying (lying down), sedentary (sitting, 
standing, desk work, reading, writing, PC 
work, watching TV), dynamic (stacking 
groceries, washing dishes, cooking, folding 
clothes, sweeping, vacuuming), walking 
(treadmill flat at 3, 4, 5, 6 km/h, inclined 
3 – 5%, 3 – 5 km/h), biking (low medium 
and high resistance level at 60 and  
80 rpms), running (treadmill 7, 8, 9, and  
10 km/h). Activities lasted for a period of  
at least 4 minutes, with the exception of 
running (1 to 4 minutes). 

2.3 Outcome Measures

All analyses were performed independent 
of the participant (leave one subject out 
validation). Accuracy of the HR normali -
zation parameter estimation was evaluated 
using: 1) Pearson’s correlation between 
each HR feature and the HR normalization 
parameter, to determine the predictive 
power of each single feature in each ADLs, 
2) the error derived from the difference be-
tween estimated and measured normaliza -
tion parameters, to determine possible bias 
and precision of the estimate. As the 
measured normalization parameter we 
used the actual HR while running on a 
treadmill. 3) The Root Mean Square Error 
(RMSE) between estimated and measured 
normalization parameters, to determine 
the accuracy of the estimate. Additionally, 
participants were split in active (ACT) and 
inactive (INA) groups, based on reported 
PALs in order to determine possible PAL-
induced bias in the estimation procedure. 
The performance measure used for EE was 
the RMSE, averaged within an activity and 
between participants. A one-way repeated-
measures within-subjects ANOVA with 
five levels was used to compare RMSE be-
tween EE models. The Tukey test was used 
as a post hoc test to perform pairwise com-
parisons and identify significant differ-
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ences. In addition, unpaired t-tests were 
used to compare INA and ACT groups. 
Significance was assessed at α < 0.05 for all 
analyses. 

2.4 Methods for Data Acquisition 
and Measurement
2.4.1 ECG Necklace

The ECG Necklace [23] is a low power 
wireless ECG platform which was config-
ured to acquire one lead ECG data at 256 
Hz, and accelerometer data from a three-
axial accelerometer at 32 Hz (▶ Figure 2). 
The sensor was placed on the chest with an 
elastic belt. Two gel electrodes were placed 
on the participant’s chest, in the lead II 
configuration.

2.4.2 Indirect Calorimeter

Breath-by-breath data were collected using 
the Cosmed K4b2 indirect calorimeter. The 
Cosmed K4b2 weights 1.5kg including 
 battery and showed to be a reliable 
measure of EE [24].

2.5 Methods for Data Analysis

Accelerometer and HR features were used 
to derive activity recognition models, walk-
ing speed, HR normalization parameter es-
timation models and EE estimation linear 
models (▶ Figure 1). To estimate walking 
speed, we deployed multiple regression 
models using accelerometer-only features 
as predictors according to [12, 13]. Details 
on the accelerometer features and on the 
implementation of the models have been 

widely covered elsewhere [9, 13]. Here, we 
will focus on the HR features and ADLs 
used for the estimation of the HR normal-
ization parameter. 

2.5.1 HR Features

HR features were extracted from R-R inter-
vals, computed over 2 minutes windows  
to ensure sufficient frequency resolution  
in the Low Frequency band [25]. Time 
 domain features included mean HR 
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Figure 1  
Overview on the ac-
tivity-specific EE esti-
mation and extension 
for automatic HR nor-
malization using an 
HR normalization 
parameter estimated 
from ADLs. Accelero-
meter features are 
used for activity rec-
ognition, walking 
speed estimation and 
EE models. HR in 
 specific activities 
(1..N, e.g. lying and 
walking at a certain 
speed) is used to esti-
mate the HR normal-
ization parameter. 
The HR normalization 
parameter is then 
used to normalize HR 
and predict EE with 
higher accuracy. 

Figure 2  
ECG Necklace. The de-
vice was used to ac-
quire ECG and accele-
rometer data.
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(meanHR), standard deviation of beat-to-
beat intervals (SDNN), square root of the 
mean squared difference of successive R-Rs 
(rMSSD) and number of pairs of successive 
R-Rs that differ by more than 50 ms 
(pNN50). Frequency domain features in-
cluded low (LF, 0.04–0.15 Hz) and high fre-
quency power (HF, 0.15–0.40 Hz). 

2.5.2 Automatic HR Normalization 
Parameter Estimation from ADLs

Multiple linear regression models were 
built to analyze individual ADLs that can 
be recognized with high recognition rates 
(e.g. lying 100%, sedentary 91% and walking 
98%, together with walking speed – RMSE 
0.28 ± 0.09 km/h [13]), as well as combi-
nations of such ADLs. For each ADL we 
built a multiple linear regression model 
using as predictors HR and/or HRV fea-
tures during such ADL, and as dependent 

variable the HR normalization parameter. 
As reference HR normalization parameter 
we selected running at 9 km/h, which was 
of sufficient intensity to provide precise HR 
normalization. No performance improve-
ment in EE estimation accuracy was found 
in our dataset when using more intense 
workloads to normalize HR. The activities 
and combinations of activities selected as 
ADL to predict the HR normalization 
 parameter were the following:
• Lying: lying down resting
•  Sed: sedentary activities
• Walk 3–4–5–6: walking at 3–4–5 or 6 

km/h
• Comb A: Lying, Sed, Walk3 and Walk4
• Comb B: Lying, Sed, Walk3, Walk4, 

Walk5 and Walk6

To analyze the impact of HRV features, two 
multiple regression models were built for 

each activity and combination, one includ-
ing HR only, and one including HR and 
HRV features.

2.5.3 EE Estimation

EE was estimated by first classifying the ac-
tivity performed using accelerometer fea-
tures and then applying an activity-specific 
EE linear regression model. The activity-
specific EE linear models use anthropo-
metric characteristics, accelerometer and 
HR features. Thus, we developed six 
multiple linear regression models, one for 
each cluster. Normalized HRs (i.e. HR di-
vided by the estimated HR normalization 
parameter) obtained from different sets of 
ADLs (see 2.5.2) were used as predictors in 
the multiple regression models for moder-
ate to vigorous clusters (dynamic, walking, 
running and biking).
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Figure 3 Difference between HR normalization parameter measured in 
the lab while the participants were running at 9 km/h and estimated HR 
 normalization parameter as predicted from a) HR features only and b) HRV 

features, during a, b, d – i) single ADLs and c) combinations of ADLs.  
j)  Prediction error divided by PAL.
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3. Results
3.1 Automatic HR Normalization 
Parameter Estimation from ADLs
Mean HR showed significant correlation 
with the HR normalization parameter dur-
ing all ADLs (lying 0.50, sed 0.50, walk3 
km/h 0.86, walk4 km/h 0.86, walk5 km/h 
0.88 and walk6 km/h 0.90, p < α). No HRV 
feature was found significantly correlated 
to the HR normalization parameter, in any 
ADL analyzed (p > α for each HRV feature 
in each ADL). Additionally, no HRV fea-
ture was able to discriminate between par-
ticipants groups divided by PALs (INA vs 
ACT), in any activity except for low speed 
walking (p < α for SDNN, pNN50, LF and 
HF during walk3). Mean HR could dis-
criminate between INA and ACT in all ac-
tivities (p < α). 

▶ Figure 3a– c shows the density plot of 
the difference between estimated and 
measured HR normalization parameters. 
The spread of the distribution reduced by 
47% from lying to walk6. ▶ Figure 3d–i 
shows the difference distribution for mod-
els where HR or HR + HRV features were 
predictors, for single ADLs. No significant 
difference was found when including HRV 
features in any activity. RMSE was 17.6 
bpm for lying data, 17.6 for sed, 10.5 for 
walk3, 10.3 for walk4, 10.4 for walk5, 9.4 
for walk6, 11.8 for CombA and 9.0 for 
CombB. No differences in RMSE were 
found when HR and HRV features were 
combined (p > á for all activities). ▶ Fig- 
ure 3j shows the HR normalization par-
ameter estimation error when different 
ADLs are used as predictors, divided per 
PAL of the participants. When only resting 

data is used (e.g. lying), the HR normaliz-
ation parameter is overestimated for ACT 
participants, while it is underestimated for 
INA ones. No difference in the estimation 
accuracy between ACT and INA partici-
pants was found when walking data was in-
cluded in the models as well (CombA and 
CombB), with higher walking speeds 
(CombB) showing higher precision (spread 
further reduced by 24%).

3.2 EE Estimation

▶ Figure 4 shows the results of the HR nor-
malization on EE estimation. The results of 
three different normalizations (from lying 
data only and using combined lying and 
walking speed data, CombA and CombB), 
was compared to the cases of no normaliz-
ation (No Norm) and normalization using 
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Figure 4 Algorithm performance in terms of RMSE of EE estimations dur-
ing different moderate to vigorous activity clusters (a to d show dynamic ac-
tivities, e.g. household, and walking, biking and running activities) where HR 
is not normalized (No Norm), normalized using lying data only, and normal-
ized using ADLs included in CombA and ComB. Normalization performed 

using the measured HR normalization parameter (Opt Norm) is also shown 
for comparison. The first column of each subplot shows performance of state 
of the art activity-specific EE models combining accelerometer and heart rate 
features, but without HR normalization.
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the measured HR normalization parameter 
(Opt Norm). State of the art activity-spe-
cific EE models combining accelerometer 
and heart rate features were used for all 
analysis. The only model not including HR 
normalization is No Norm. The only model 
not including HR normalization is No 
Norm. RMSE is reduced between 14 and 
17% for dynamic activities, between 10 and 
37% for walking activities, between 6 and 
38% for biking activities and between 6 and 
42% for running activities. No significant 
error reduction was shown when the HR 
normalization parameter estimated using 
lying data only was used (6 to 17%, p > α). 
Error reduction when walking data was in-
cluded was significant for walking activities 
(36 –37%, p < α), biking activities (30 –38%, 
p < α) and running activities (31– 40%,  
p < α), but not for dynamic activities 
(14 –15%, p > α). CombA and CombB 
could reduce RMSE at the same extent the 
optimal HR normalization could (differ-
ence between ComA, CombB and Opt 
Norm was not statistically significant,  
p > α).

4. Discussion
4.1 Answers to Study Questions

We report the main findings of our analy-
sis, in relation to the four objectives of this 
study. 1) To determine which ADLs and 
HR features are necessary to accurately de-
termine HR normalization parameters: 
from our analysis we derive that resting ac-
tivities alone are not sufficient to estimate 
HR normalization parameter, even if there 
is positive correlation between HR at rest 
and the HR normalization parameter. 
Thus, resting activities alone are unable to 
reduce EE estimation error in participants 
with different reported PALs. However, re-
sults obtained using data at rest and while 
walking at low speeds (e.g. ≤ 4 km/h), 
showed results comparable to the ones ob-
tained when including data while walking 
at higher speeds. Hence, ADL and HR fea-
tures support estimating the HR normali -
zation parameter in typical mixed lifestyle. 
2) To determine whether HRV during 
ADLs can improve accuracy of the esti-
mation of HR normalization parameters: 
from our analysis HRV features were un-

able to provide additional information and 
therefore improve the estimate accuracy of 
the HR normalization parameter (▶ Fig- 
ure 3d – i). We attribute this finding to a 
weaker inter-personal relation between 
HRV and CRF. 3) Whether HR normaliz-
ation parameter estimation from different 
ADLs and HR features is affected by the 
participants’ PAL: our analysis showed that 
the normalization procedure works equally 
well in participants with different PALs, 
provided that walking data is included in 
the HR normalization parameter multiple 
linear regression models (▶ Figure 3j). Es-
timating precision is improved when data 
while walking at higher speeds is included 
in the HR normalization parameter 
multiple linear regression models (see Sec. 
2.5.2 and ▶ Figure 3a – c). 4) To determine 
what is the impact of different ADLs and 
HR features used to predict HR normal -
ization parameters on EE estimation accu-
racy: our analysis showed that EE esti-
mation accuracy when the HR normaliza -
tion parameter is estimated from ADLs in-
cluding walking (CombA and CombB) 
reaches the same accuracy of the optimal 
normalization that could be performed 
measuring the HR normalization parame -
ter during a treadmill test (▶ Figure 4).

4.2 Strength and Weaknesses  
of the Study

To the best of our knowledge, this is the 
first time that HR and HRV features are in-
vestigated during ADLs as predictors of a 
HR normalization parameter, together 
with the impact of such normalization 
 procedure on EE estimation accuracy and 
participants with different PALs.

Using the proposed personalization ap-
proach, it is possible to significantly reduce 
EE estimation error by automatically nor-
malizing HR using low intensity ADLs, 
such as sedentary activities and walking at 
low speeds. However, we recognize limi-
tations in our study. Even though we devel-
oped algorithms able to derive the HR nor-
malization parameter automatically during 
ADLs, we tested it using laboratory record-
ings only. We consider that evaluation with 
lab data is a necessary first step. In particu-
lar, the approach allowed us to establish the 
accuracy of EE estimation models derived 

with ADLs and HR features. Further inves-
tigations should explore the relation be-
tween specific contexts and physiological 
parameters beyond linear models. The 
analysis should also be extended to a wider 
population consisting of participants with 
varying cardiorespiratory fitness level.

4.3 Results in Relation to Other 
Studies

Previous work by our group [13] as well as 
others [8, 11] showed that normalizing the 
HR using a normalization parameter repre-
sentative of CRF, such as the HR at a cer-
tain workload, can significantly reduce 
inter-person differences and consequently 
improve EE estimation accuracy. However, 
to determine the HR normalization par-
ameter for an individual, required personal 
calibration (e.g. performing a treadmill 
test), which is not practical. Moreover, the 
calibration would need to be repeated fre-
quently. In this study we investigated the 
possibility to determine the HR normaliz-
ation parameter from different combi-
nations of ADLs, including rest only activ-
ities (e.g. lying or sedentary). Additionally, 
we analyzed HRV features during ADLs, in 
the context of EE estimation.

Given the tight relation between CRF 
and the HR normalization parameter, 
which is the basis of sub-maximal CRF 
tests [14], it is of interest to review previous 
research on the relation between HRV and 
CRF. Many studies investigated the relation 
between HR and CRF during cross-sec-
tional studies [18 –20], as well as interven-
tions [26, 27], and showed reductions in 
HR due to higher CRF levels, but no 
changes in HRV. Our results are in agree-
ment with those, where HRV features 
could explain very little of the differences 
in fitness level, and mean HR was the best 
predictor of such differences. Since differ-
ences in HR and HRV features at rest are 
mainly driven by age, while feature differ-
ences during exercise are mainly driven by 
fitness [28], we investigated HRV during 
low intensity ADLs as well. However, we 
could not find a relation between HRV fea-
tures while walking and the HR normaliza -
tion parameter. Other authors did report a 
significant increase in HRV features and 
CRF following a physical activity interven-
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tion [29], however it is not clear if HRV 
features could be used as predictors of CRF.

5. Conclusions

We analyzed the impact of HR and HRV 
features in different ADLs as predictors of a 
HR normalization parameter necessary in 
order to reduce inter-person differences in 
HR and improve EE estimation accuracy. 
Using HR and HRV features during ADLs 
as predictors, we aimed at providing a nor-
malization procedure able to automatically 
normalize HR without requiring any spe-
cific test. Overall, we conclude that an ac-
curate personalized EE estimation is feas-
ible, even when only data at rest and from 
walking at low speeds is available, as fre-
quently occurring in today’s lifestyle. 
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