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ABSTRACT

Accurate estimation of Energy Expenditure (EE) in ambu-
latory settings is a key element in determining the causal
relation between aspects of human behavior related to phys-
ical activity and health. We present a new methodology for
activity-specific EE algorithms. The proposed methodology
models activity clusters using specific parameters that cap-
ture differences in EE within a cluster, and combines these
models with Metabolic Equivalents (METSs) derived from
the compendium of physical activities. We designed a proto-
col consisting of a wide set of sedentary, household, lifestyle
and gym activities, and developed a new activity-specific EE
algorithm applying the proposed methodology. The algo-
rithm uses accelerometer (ACC) and heart rate (HR) data
acquired by a single monitoring device, together with an-
thropometric variables, to predict EE. Our model recognizes
six clusters of activities independent of the subject in 52.6
hours of recordings from 19 participants. Increases in EE es-
timation accuracy ranged from 18 to 31 % compared to state
of the art single and multi-sensor activity-specific methods.

Categories and Subject Descriptors

J.3 [Computer Applications]: Life & medical sciences—
Health

General Terms

Algorithms, Experimentation

Keywords
Energy Expenditure, Activity Recognition

1. INTRODUCTION

Lack of physical activity is one of the major health prob-
lems in most of the western world. Even though our genome
has not changed much over the last ten thousand years and
more [11], activity patterns of our hunter-gatherers ancestors
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have been first modified by the agricultural and industrial
revolution, and then completely disrupted by the shift to-
wards computer-based work which took place over the past
twenty years. As a result, two thirds of the world population
is overweight and obesity affects a third of the population
in the US at present. Other diseases, such as diabetes, are
rapidly becoming widespread epidemics as well [26]. Ac-
curate quantification and assessment of habitual physical
activity in ambulatory settings is essential in order to find
subtle but important links between not only sedentary time,
but all the aspects of habitual physical activity, and health
[15]. New technologies, seamlessly integrated in everyone's
life, able to monitor objectively and non-invasively our be-
havior, can provide unprecedented insights on these links.

Currently, epidemiologists use accelerometers [13] and HR
monitors [10] to objectively gather information about physi-
cal activity. Traditionally, they make use of regression equa-
tions developed using data acquired over a certain protocol
[5, 10, 13] to predict EE. For accelerometers, the rationale
behind this approach is that body motion measured close to
the body center of mass, is linearly related to EE. On the
other hand, HR monitors exploit the linear relation between
HR and oxygen uptake. Limitations of these approaches are
the inability of single accelerometers worn close to the body
center of mass to detect low and upper body motion [10, 21],
the low accuracy of HR monitors during sedentary behavior
and the need for individual calibration [8].

Recent work [4] showed that activity type can be reliably
detected with wearable sensors, opening new opportunities
for EE monitors. Over the last years, a few activity-specific
algorithms have been reported [3, 7, 19, 21]. They first
recognize the activity performed, and then apply a model
developed for the specific activity, showing consistent im-
provements compared to previous methods. What is not
clear at this stage, is the methodology to follow when devel-
oping such an algorithm. There is currently little agreement
in literature, on which activities to detect. Some [3, 21] used
multi-accelerometer systems and extensive protocols to de-
tect a large amount of activities (26 and 52 respectively),
exploiting the fact that frequent misclassification of the ac-
tivities will most likely result in small EE errors, due to
the similarity in the movement involved. Others, [7, 19] de-
veloped either multi-sensor or single accelerometer systems
able to recognize a smaller set of activities with higher ac-
curacy. Once the activity set has been selected, even less
agreement is found on how to predict EE given an activ-
ity. Some works assign static Metabolic equivalents (METs,
the ratio of metabolic rate during a specific activity to a



reference metabolic rate), combined with the subjects’ an-
thropometric parameters or fitness indicators such as the HR
at rest [3]. Others applied a linear regression equation for
each model [23, 21, 19]. At this stage, it is not clear whether
combining METSs values and regression models could provide
better estimates [22], and whether each activity-specific re-
gression model requires the same parameters. As a matter of
fact, differences in protocols and evaluation measures make
it impossible to compare the different approaches.

In this paper we present a methodology which aims at
clarifying the relation between physical activity patterns de-
tectable with wearable sensors, and EE. Our paper includes
four main contributions. a) We propose a new methodol-
ogy, which combines METSs values from the compendium of
physical activities [2] with regression equations, depending
on the type of activity. b) We show that by carefully se-
lecting activity-specific features able to explain differences
in EE within the activity, EE estimations can be improved.
¢) We develop a new algorithm applying our methodology
to the case of a single monitoring device able to measure ac-
celeration and HR. d) We compare our algorithm to models
used in epidemiological studies, as well as to state of the art
activity-specific EE methods.

2. RELATED WORK
2.1 Epidemiological Studies

Accelerometers and HR monitors are the most commonly
used single sensor devices in epidemiologic studies. Ac-
celerometers use activity counts, a unit-less measure repre-
sentative of whole body motion, as the independent variable
in the linear regression model developed to predict EE [13].
Shortcomings of single regression models are; a) the accu-
racy of the monitor is highly dependent on the activities
used to develop the model, b) a single model does not fit
all the activities, since the slope and intercept of the regres-
sion model change based on the activity performed while
data is collected [23, 21]. As a result, even when activity
counts are representative of EE, the output can be mislead-
ing. Additionally, activity counts are defined differently by
each sensor’s manufacturer (i.e. Actigraph counts, and the
equations derived from them, are not directly comparable to
Actical or Actiheart counts [25]). HR monitors suffer from
different problems, the most common being the low accuracy
during sedentary behavior [10], given that HR is affected by
many other factors (e.g. stress and emotions), and the need
for individual calibration [8]. Some of the issues have been
tackled developing models that use more than one linear re-
gression equation, such as Crouter’s 2-regression model [12]
or Brage's [9] branched equations. Even though these meth-
ods are promising, especially the ones combining HR and
ACC data, they have shown limited improvements compared
to ACC based simple linear regression models [5, 20].

2.2 Methods Based on Machine Learning

The latest monitors go towards two directions. Both strate-
gies make use of pattern recognition and machine learning
techniques. Some authors applied these methods to directly
estimate EE from ACC features [14, 18]. Others, extended
Crouter’s and Brage's approach, performing activity recog-
nition over a pre-defined set of activities, and then applying
different methods to predict EE [3, 7, 23, 19, 21]. Given
the significant amount of work adopting activity recognition

as a first step to estimate EE, and the consistent improve-
ments obtained [6], we believe this is the best methodology
to follow when developing such algorithms. The principle
behind activity recognition as a first step in EE estimation is
that the slope and intercept of the regression models change
based on the activity performed [23]. Tapia [21] developed a
system composed of three accelerometers and applied a dif-
ferent regression equation for each activity classified. The
regression models use ACC features as independent vari-
ables. The system can recognize about fifty activities with
50% accuracy in a subject-independent manner. Root Mean
Square Error (RMSE) was reduced from 2.7 to 1.0 M ET's
compared to Crouter’s approach. Bonomi [7] proposed a
similar approach, but with a single sensor device, mounted
on the lower back. His system recognizes six clusters of
activities and assigns a MET value to each one of them. To-
tal Energy Ezpenditure (TEE) was validated against Doubly
Labeled Water and showed accuracy up to 1M Joules/day
when simple anthropometric parameters are used as inde-
pendent variables together with the assigned METs. van
Hees [23] also used a single sensor able to distinguish four
activities, and then applied linear regression using a measure
of motion intensity as the independent variable (similarly to
Tapia). Albinali [3] developed a multi-sensor system, com-
posed of three accelerometers able to distinguish twenty-two
activities with 26% accuracy (subject-independent). He ex-
tended Bonomi’s approach, developing a custom MET table,
which takes into account anthropometric variables, as well
as the HR at rest, to predict EE more accurately at the
individual level. This method showed improvements up to
15% compared to non-activity-based models. Rumo [19] also
combined HR and ACC. His system consists of three sensors,
two accelerometers and a HR belt, and can classify seven
types of activities. Manual selection and the bootstrapping
method were used to determine which independent variables
to adopt for the activity-specific models. RMSE for the in-
dividual models ranged from 2.2 to 9.7 K Joules.

2.3 Towards Activity-Specific EE estimation

In this section we analyze shortcomings of state of the art
activity-specific EE algorithms. More specifically, we be-
lieve the following limitations should be tackled; a) Activity-
specific models that assign METs values to each activity
classified assume that EE is constant within a cluster of
activities [3, 7]. Nevertheless, most activities can be per-
formed at different intensities, and including information
about whole body motion or other features (ACC or HR)
representative of variations in EE within an activity, would
improve the estimate. b) Activity-specific regression mod-
els apply linear regression (e.g. using activity counts) even
though there is no whole body motion involved [21], and
therefore the motivation for applying linear regression, which
is the linear relation between intensity of motion and EE,
does not hold anymore. c¢) Activity-specific models that
assign custom METSs values [3] should carefully select the
independent variables used. For example HR at rest, which
is often used as an index of cardiorespiratory fitness, should
not be used to predict EE at rest, since cardiorespiratory
fitness is not related to Basal Metabolic Rate (BMR). Care
should be taken when considering anthropometric variables
as well. The energy cost of activities such as walking de-
pends on body weight, while the assumption does not apply
to biking or sitting.
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Figure 1: Block diagram of the proposed methodol-
ogy, and example of an application.

3. ANEW METHODOLOGY

In this section we present our new approach to activity-
specific EE modeling, and apply this methodology to the
case of imec’'s ECG necklace. Our approach to combine
static METs with activity-specific regression equations takes
four steps to derive an EE model. First, we categorize activ-
ities into clusters meaningful for EE estimates. Secondly, we
separate sedentary and non-sedentary activities, and assign
a static EE value to sedentary ones. Then, we examine the
motion patterns of non-sedentary clusters to select the best
independent variables for the prediction models. Finally, we
include anthropometric characteristics to take into account
differences in body size (see Figure 1).

Step 1- Create Activities Clusters

Different postures provoke different levels of EE, due to the
energy cost of holding a specific posture [1] and should be
individually distinguished. Activities clusters (i.e. groups of
activities) should contain at least the basic human postures
(e.g. lying, sitting and standing), in order to avoid am-
biguous results when using the monitor to detect activities
that were not part of the original training set. The detec-
tion of more activities, which are often very specific (e.g.
brushing teeth, stretching, fidgeting hands, etc.) requires
validation on a different population and in real-life settings,
to evaluate the sensitivity and specificity of such activities.
If more sensors are used, the distinction between sedentary
and non-sedentary activities while holding a specific posture
(e.g. sitting resting or sitting lifting weights) will most likely
produce better EE estimates, since different models could be
applied. When designing an activity-specific EE algorithm,
we recommend to group activities into clusters containing at
least the following postures: lying, sitting and standing. For
a specific posture, we recommend to distinguish ambulation
and transportation, as well as to separate between resting
and non-resting activities whenever possible.

Step 2 - Model Sedentary Clusters

Sedentary activities (e.g. lying down, sitting resting, watch-
ing TV, etc.) are such that between-individual differences
in EE cannot be further explained by ACC features or HR

data, but only by anthropometric variables. Therefore we
assign to sedentary-only clusters (i.e. clusters which contain
only resting activities) a static EE value, derived from the
compendium of physical activities.

Step 3 - Model Non-Sedentary Clusters

Our methodology splits modeling of non-sedentary clusters
into two parts. Non-sedentary activities may or may not
involve specific patterns of motion representative of changes
in EE that an accelerometer can detect. For example, non-
sedentary activities such as some gym exercises or playing
instruments might involve no whole body motion or other
specific motion pattern representative of changes in EE (case
A). Other non-sedentary activities (e.g. household, walking,
etc.) involve a different amount of whole body motion de-
pending on the intensity of the action (case B).

Case A: We predict EE for clusters of activities that do not
involve whole body motion or specific ACC patterns using
only physiological signals as independent variables.

Case B: For the remaining clusters of activities, the in-
dependent variables used to predict EE will include ACC
features as well. Which features to introduce will depend
on the activity performed. The question to answer in or-
der to develop a good model is the following: what ACC
features are representative of changes in EE within the clus-
ter? Whole body motion is a good candidate for most of the
activities that involve significant movement (e.g. walking).
Other activities, such as biking, do not involve whole body
motion, but show specific patterns that ACC features can
capture. When a cluster contains activities with similar mo-
tion patterns but different EE, physiological signals should
be used in the model to capture the remaining variance.

Step 4 - Include Anthropometric Characteris-
tics and Resting Metabolic Rate

Once activities have been clustered, split between sedentary
and non-sedentary, and the independent variables for each
cluster have been selected, anthropometric characteristics
and RMR should be taken into account as well. The type of
anthropometric characteristics used for each cluster model
depends on the activity performed. For example, the EE of
walking and running is related to body weight, while non-
weight bearing activities, such as biking, are not. If the
dependent variable of the regression models is TEE, RMR
should be included in the models.

4. USE CASE - A NECKLACE MONITOR

In this section we apply our proposed methodology to the
use case of necklace which combines ACC and HR data in
a single monitoring device. Details on the necklace and the
experimental protocol can be found in Sec. 5.2.1 and 5.3.

4.1 Method Implementation

Step 1 - Create Activities Clusters

Different clusters of activities have been evaluated based on
their impact on EE and the ability of a single device placed
on the chest to detect them. By using a single monitoring
device located at the chest it was not feasible to differentiate
between sitting and standing. Therefore we grouped activ-
ities in the following clusters: lying, low whole body motion
(LWBM), high whole body motion (HWBM), walking, biking



Table 1: Distribution of the activities into the six
clusters used for activity recognition.
Cluster name | Original activities

Lying Lying down resting

LWBM Sitting resting, sitting stretching, stand-
ing stretching, desk work, reading, writ-
ing, working on a PC, watching TV, sitting
fidgeting legs, standing still, bicep curls,
shoulder press
Stacking groceries, washing dishes, prepar-
ing a salad, folding clothes, cleaning and
scrubbing, washing windows, sweeping,
vacuuming
self-paced, self-paced carrying books,
treadmill (flat: 3,4,5,6km/h, 4km/h car-
rying weights, incline: 3,5km/h,5,10%))
Biking Cycle ergometer, low, medium and high re-
sistance level at 60 and 80 rpm
7,8,9,10 km/h on a treadmill

HWBM

Walking

Running

and running - see Table 1. LWBM and HWBM are clus-
ters similar to the sitting-standing and active standing intro-
duced in [7] to distinguish between sedentary and household
activities with a single accelerometer, and are useful in iso-
lating sedentary behavior even when sitting and standing
cannot be distinguished.

Activities Clusters Classification: Four pattern recogni-
tion methods were tested on the six clusters of activities:
Classification Trees (C4.5), Artificial Neural Networks, Sup-
port Vector Machines, and Naive Bayes. The best perfor-
mance was obtained by the C4.5 classification tree, which
was used for the EE model.

Speed Estimation: We estimated speed using multiple lin-
ear regression. Independent variables for walking and run-
ning included both ACC and anthropometric features. Bik-
ing speed was predicted by ACC features only.

Step 2 - Model Sedentary Clusters

The only sedentary-only cluster of our model is lying, which
was assigned a value of 1 MET. The LWBM cluster con-
tains resting activities mixed with non-sedentary activities,
therefore it was modeled as a non-sedentary cluster.

Step 3 - Model Non-Sedentary Clusters

Using a single monitoring device sets limits regarding the
number of distinguishable activities. Thus, the other activ-
ity clusters contain some variability in EE and have been
modeled as non-sedentary clusters (Case B in Sec 3). What
ACC features are representative of variations in EE within
these cluster?” LWBM and HWBM are clusters involving di-
verse and irregular motion patterns, that we captured using
features representative of intensity and variability of mo-
tion over the three axes. Walking, running and biking in-
volve repetitive patterns, that can be easily captured using
measures of motion intensity or motion speed (see Table 4
for details). All models include the Heart Rate above Rest
(HRaR) to complement acceleration features in capturing
differences in EE, e.g. walking vs. walking carrying weights.

Step 4 - Include Anthropometric Characteristics and
Resting Metabolic Rate

Body weight was included for all the clusters involving am-
bulation (HWBM, walking and running). No anthropo-

Table 2: Study participants’ characteristics

characteristic | mean + std range
Age (years) 29.5+4.6 24 -39
Height (mn) 1.76 £0.11  1.59 — 1.97
Weight (kg) 72.7+14.7  50.2 -102.1
BMI (kg/m?) 233431  18.6 —28.7

metric variables were included for lying, LWBM and bik-
ing. RMR was in included in models not involving ambula-
tion (lying, LWBM and biking). We computed RMR using
simple anthropometric variables only (gender, age, weight
and height). The Harris-Benedict formula estimates BMR,
which is between 10 and 20% lower than RMR [5]. There-
fore, we chose to increase BMR by 15%, to estimate RMR.

5. DATA COLLECTION AND ANALYSIS
5.1 Participants

Participants were 19 (14 male, 5 female) healthy imec-nl
employees from diverse ethnic background - see Table 2.
Imec’s internal Ethics Committee approved the study, and
each participant signed an informed consent form.

5.2 Instruments

5.2.1 ECG Necklace

The ECG Necklace [17] is a low power wireless ECG plat-
form. The system relies on an ultra-low-power ASIC for
ECG read-out, and it is integrated in a necklace, providing
ease-of-use and comfort while allowing flexibility in lead po-
sitioning and system functionality. It achieves up to 6 days
autonomy on a 175 mAh Li-ion battery. For the current
study, the ECG Necklace was configured to acquire one lead
ECG data at 256 Hz, and ACC data from a three-axial ac-
celerometer (ADXL330) at 64 Hz. The sensor was placed
on the chest with an elastic belt. The z, y, and z axes of
the accelerometer were oriented along the vertical, medio-
lateral, and antero-posterior directions of the body, respec-
tively. Two gel electrodes were placed on the participant’s
chest, in the lead II configuration. Data were recorded on
the on-board SD card to ensure integrity. Data were also
streamed in real-time to provide visual feedback of the sys-
tem functionality to the experimenter.

5.2.2 Indirect Calorimeter

Breath-by-breath data were collected using the Cosmed
K 4b? indirect calorimeter. The Cosmed K4b? weights 1.5kg,
battery included, and showed to be a reliable measure of EE
[16]. The system was manually calibrated before each exper-
iment according to the manufacturer instructions. This pro-
cess consists of allowing the system to warm-up, following
a double calibration, first with ambient air and then with
calibration gas values. A delay calibration was performed
weekly to adjust for the lag time that occurs between the
expiratory flow measurement and the gas analyzers.

5.3 Experiment Design

Participants were invited for recordings on two separate
days. They reported at the lab at 8.00 a.m., after refraining
from drinking (except for water), eating and smoking in the
two hours before the experiment. The protocol included a



wide range of lifestyle and sport activities, including seden-
tary and household activities. More specifically, day one
consisted of activities selected as representative of common
daily leaving of many people in industrialized countries [5].
The activities were: lying down, resting, sitting stretching,
standing stretching, desk work, reading, writing, working on
a PC, watching TV, fidgeting legs, standing still, standing
preparing a salad, washing dishes, stacking groceries, folding
clothes, cleaning the table, washing windows, sweeping, vac-
uuming, walking self-paced, walking self-paced carrying books
(4.5 kg), climbing stairs up, climbing stairs down. Each
sedentary and household activity was carried out for a pe-
riod ranging from 4 to 12 minutes, with a 1 or 2 minutes
break between the activities. Day two was carried out at
the gym, where subjects performed a series of more vigorous
activities, including: step-test, biceps curls, shoulder press,
walking at 3,4,5 and 6 km/h on a treadmill, walking at 4
km/h carrying a weight (5% of the subject's weight), walk-
ing at 8 km/h, 5 and 10% inclination, walking at 5 km/h,
5 and 10% inclination, cycle ergometer at 60 and 80 rpm,
low, medium and high resistance levels, running at 7,8,9 and
10 km/h. Activities carried out at the gym were 4 minutes
duration, except for free weights and running, which lasted
for 1 to 2 minutes.

5.4 Study Design Choices

We included a wide set of activities, ranging from seden-
tary to vigorous, recorded in laboratory settings. Even though
performance for activities that were not part of the dataset
should be assessed outside of the lab, there is currently no
reference system able to measure breath-by-breath EE in
unconstrained settings. For example, DLW — which is the
standard reference system for EE in daily life — provides
only TEE after one or two weeks, averaging under and over-
estimations. Thus, it provides limited information about the
algorithm performance under different conditions, which is
key in understanding advantages of activity-specific models.

5.5 Pre-processing

The dataset acquired in this work contains 52.6 hours of
annotated data collected from nineteen subjects, consisting
of reference VO2z, VCOa2, three axial acceleration and ECG.

5.5.1 ECG Necklace Data

Raw ECG and ACC data were downloaded from the SD
card of the ECG Necklace using proprietary software de-
veloped by imec-nl. Raw data were exported into csv files
containing time-stamped ECG and acceleration samples. A
Continuous Wavelet Transform based beat detection algo-
rithm was used to extract R-R intervals from ECG data,
which output was examined to correct for missed beats.

5.5.2 Indirect Calorimeter Data

Breath-by-breath data acquired from the Comsed K4b?
was resampled at 0.5 Hz. EE was calculated from Oz con-
sumption and C'O> production using Weir's equation [24].
The first 1 or 2 minutes of each activity were discarded to
remove non-steady-state data.

5.6 Feature Extraction

Features extracted from the ECG necklace raw data were
used to derive activity recognition and EE models. Activ-
ity recognition was performed on the six activity clusters

introduced in Sec. 4.1. An activity-specific EE model was
derived for each cluster. ACC data over the three axes were
segmented in 4 second windows, band-pass (BP) filtered be-
tween 0.1 and 10 Hz, to isolate the dynamic component
caused by body motion, and low-pass (LP) filtered at 1 Hz,
to isolate the static component, due to gravity. Time and
frequency features were extracted from each window over the
three axes of the LP and BP signal. Time features included
mean, mean of the absolute signal, magnitude, mean dis-
tance between azes, skewness, kurtosis, variance, standard
deviation, coefficient of variation, range, min, mazx, corre-
lation, inter-quartiles range, median and zero crossing rate.
Frequency features included: spectral energy, entropy, low
frequency band signal power (0.1 —0.75 Hz), high frequency
band signal power (0.75 — 10 Hz), frequency and amplitude
of the FFT coefficients. These features were selected due to
high accuracy showed in past research [4, 7, 21].

Three features were extracted from R-R intervals, com-
puted over 15 seconds windows; mean, variance and stan-
dard deviation. Additionally, sleep HR was derived from the
HR while lying down [8], and used to extract the HRaR. R-R
intervals features were not included in the activity recogni-
tion model. Feature extraction was performed in MATLAB
(MathWorks, Natick, MA).

5.7 Feature Selection

Feature selection for the activity recognition model was
performed according to different criteria. First of all, we
removed features that depend on the range and sensitivity
of the accelerometer used to ease implementation of the al-
gorithm on different hardware. Secondly, we evaluated fea-
tures based on the individual predictive ability of the fea-
ture alone, along with the degree of redundancy between
them. This step was implemented in Java using libraries
provided by the WEKA machine learning toolkit (Univer-
sity of Waikato, Hamilton, New Zeland).

The final feature set was manually selected, taking into
account the output from the automatic feature selection
scheme when features showed high correlation. It includes:
mean of the absolute band-passed signal and inter-quartile
range — which capture the intensity of whole body mo-
tion, mean distance between azxes and median — which cap-
ture posture information, variance and standard deviation
— measures of the spread of the distribution, zero cross-
ing rate and main frequency peak — which provide useful
information on the repetitive pattern of certain activities,
low and high frequency band signal power. We manually se-
lected features for the EE models, according to the criteria
illustrated in Sec. 4.1.

5.8 Statistics and Performance Measures

5.8.1 Activity Recognition

Performance of the activity recognition model was eval-
uated independent of the subject, using leave-one-subject-
out-cross-validation. Metrics used are the sensitivity and
specificity of the recognition of each activity, as well as the
percentage of the correctly classified instances over the entire
set used for validation. Walking, biking and running speeds
were evaluated according to the Root Mean Square Error.

5.8.2 Energy Expenditure

Performance of the EE models were evaluated in a sub-



Table 3: Classification performance of the C4.5 clas-
sifier used to select the cluster model to predict EE.

Activities Cluster | Sensitivity | Specificity
Lying 1 0.99
LWBM 0.91 0.97
HWBM 0.87 0.95
Walking 0.98 0.99
Running 0.99 0.99
Biking 0.91 0.99

ject independent fashion, developing regression models on
all the subjects but one, and validating them on the re-
maining one. The procedure was carried out N times (N =
number of subjects), and results were averaged. The per-
formance measures used is the RMSE, averaged within an
activity and between subjects. Results are reported only in
terms of RMSE because of the great between-subject vari-
ability typical of EE estimates, which makes averages pre-
dictions between subjects less informative than the average
error. Normalization procedures do exist (e.g. estimating
in kecal/kg), but do not take into account that EE during
different activities is affected differently by body weight.

5.8.3 Comparisons

Reported performance of EE models are highly dependent
on the protocol used to validate the algorithms, which makes
it impossible to compare different models from published re-
sults. We re-implemented six methods; two simple methods
used in epidemiological studies, using ACC (method ACC
[13]) or HR (method HR [10]) as independent variable of the
regression model, and four activity-specific (AS) EE algo-
rithms. The four models derive EE assigning static values
to the detected activity (method AS-static [7, 3]), using a
single linear regression model per activity and a measure of
Motion Intensity (MI) as the independent variable (method
AS-MI [21, 23]), combining ACC and HR features follow-
ing automatic variables selection (method AS-mized [19] -
where HR is always used, and accelerometer features are
part of one model only) or following the proposed method-
ology (method AS-new). To the best of our knowledge, this
is the first comparison of state of the art activity specific
models on the same dataset.

6. RESULTS
6.1 Activity Clusters Classification

Subject independent classification accuracy of the classi-
fication tree used to select the cluster model to apply to
estimate EE was 92.9%. Table 3 shows the performance of
the classifier in terms of sensitivity and specificity for the six
clusters. RMSE for walking, running and biking speed were
0.31 km/h, 0.77 km/h and 8.43 rpm. Biking speed errors
can be reduced increasing the frequency resolution (i.e. us-
ing windows > 4 seconds). Utilizing 4 seconds window our
system cannot detect speeds other than multiples of 0.25 Hz.

6.2 Activity Clusters Models

We derived six models (see Table 4), applying the pro-
posed methodology. The total RMSE over the whole pro-
tocol, assuming a perfect classification of the activities, was
0.86 kcal/min. RMSE for lying, LWBM, HWBM, walk-

Table 4: Predictors and models used to estimate EE
for each activities cluster. BW is body weight, MI is
motion intensity, VAR is variance, STD is standard
deviation, IQR is inter-quartile range.

Cluster | Model

Lying RMR x 1MET

LWBM —0.43 + 0.00068 RMR + 0.015 HRaR +
18.23 MIx + 15.35 MIy + 2.31 MIz —
11.83VARx — 25.71 VARy — 5.03 VARz

HWBM | —2.42 + 0.029 HRaR + 5.23 MIxz +
1.76 MIy + 1.25 MIz — 33.10 VARz —
39.92VARy —9.28VARz+14.96 ST Dx +
12.11 ST Dy + 1.76 ST Dz + 0.04 BW

Walking | —5.314-0.068 H RaR+6.00M [x+0.087BW

Biking —6.78 + 0.0035 RMR + 0.073 HRaR +
0.026 speed

Running | —10.62 + 0.027 HRaR + 5.47 IQRx +
0.16 BW

ing, running and biking were 0.24,0.42,0.63,1,27,1.06 and
1.29 kcal /mim respectively. Misclassification lowers perfor-
mance to RMSE = 0.87 kcal/min. RMSE for the single
clusters after classification were 0.24,0.42,0.61, 1,27, 1.07 and
1.44 kcal /mim. These results confirm that the classifier can
be used to select activity cluster models.

6.3 EE Estimation Performance

Table 5 shows results in terms of RMSE averaged over all
of the activities and per cluster. Simple methods used in
epidemiological studies (methods ACC and HR) show the
lowest performance and will not be further discussed.

Results of the AS-static method showed improvements
compared to non-activity-specific models, but higher error
compared to other activity-specific models, in all of the clus-
ters. Recognizing an activity and assigning a static EE value
works well on average but cannot capture the variability in
EE within the cluster. Measures of motion intensity (AS-
MT) seem to outperform HR for low to medium intensity ac-
tivities (LWBM and HWBM), while activities where whole
body motion is not representative of EE, such as biking (see
Fig. 6), were better modeled by methods using HR as well
(AS-mized and AS-new).Walking patters were predicted ac-
curately by methods using ACC only features (AS-MI) when
differences in EE could be explained by motion patterns
alone. The inability of these methods to detect the higher
energy cost of carrying weights or walking uphill results in
decrease of performance during these activities (see Fig. 5).

Overall, combining manually selected ACC and HR fea-
tures, representative of variations in EE within a cluster,
shows significant improvements compared to other meth-
ods. Estimates of compendium-based models (AS-static)
were improved by 31 %. Regression based models that use
a measure of motion intensity (AS-MI) or automatically se-
lected variables (AS-mized) as predictors, were improved by
18 and 19% respectively. Figures 2 to 6 show how combining
features specifically selected for a cluster, based on motion
patterns involved in the cluster, as well as physiological sig-
nals able to capture variations in EE when motion is con-
stant, provides better estimates compared to other activity-
specific methods, on almost all of the activities included in
our protocol.



Table 5: Overall and per cluster performance (RMSE) of the methods implemented. Results are in kcal/min.
AS is Activity Specific, MI is Motion Intensity. Refer to Sec. 5.8.3 for details on the methods.

Cluster ACC HR AS-static AS-MI AS-mixed | AS-new
Lying 0.65 1.21 0.29 0.26 0.24 0.24
LWBM 0.68 1.45 0.66 0.48 0.59 0.42
HWBM 0.75 1.32 1.19 0.80 0.89 0.63
Walking 1.55 1.65 1.66 1.49 1.43 1.27
Running 2.00 2.72 1.54 1.20 1.50 1.06
Biking 4.38 1.67 1.88 1.84 1.52 1.29
Overall 1.51 1.57 1.25 1.05 1.06 0.86
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Figure 2: Comparisons of AS methods for the activ-

ities included in the LWBM cluster.
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Figure 3: Comparisons of AS methods for the activ-
ities included in the HWBM cluster.
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Figure 4: Comparisons of AS methods for the activ-
ities included in the running cluster.

7. CONCLUSIONS AND FUTURE WORK

We introduced a new methodology, which aims at clarify-
ing the relation between type of physical activity and EE.
Our approach consists of four steps. First, we separated
activities into clusters meaningful for EE estimates. Sec-
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Figure 5: Comparisons of AS methods for the activ-
ities included in the walking cluster.
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Figure 6: Comparisons of AS methods for the activ-
ities included in the biking cluster.

ondly, we split sedentary and non-sedentary activities, and
assigned a static MET value to sedentary activities. The
motion patterns of non-sedentary clusters were examined,
to select ACC features representative of intra-individual dif-
ferences in EE within the cluster. When no differences in
motion were distinguishable within one cluster, physiological
signals were used to discriminate between different levels of
EE. Finally, we included anthropometric characteristics to
take into account differences in body size. By applying this
methodology to the development of a new algorithm for a
single monitoring device, we showed improvements in EE
estimates, ranging from 18 to 31% compared to state of the
art activity-specific methods.

An aspect of interest that was not further investigated
during this study is the personalization of EE models that
use physiological signals. Physiological signals (e.g. HR)
differ greatly at the individual level, and require either indi-



vidual calibration or normalization. We used the heart rate
above rest as the only heart rate feature, to reduce between-
subject differences in HR during different activities. We are
currently investigating the possibility to include other fac-
tors able to explain between-subject differences in HR dur-
ing different activities (e.g. cardiorespiratory fitness level),
in order to further improve the activity-specific models.
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